

A VIRTUAL JOURNEY INTO THE COSMOS LOOKING AT THE VERY SMALL AND THE VERY LARGE!

For more information about these kinds of programs please visit the web site at www.lookuptothestars.com

Daily Observation Log

Observer: \qquad am
Time: \qquad pm Duration: \qquad min

Sky: $\quad 012345$ (circle one) \quad Seeing: 012345 (circle one)
Constellation(s): \qquad

Star(s): \qquad

Planet(s): \qquad
Object(s): \qquad
Phenomena: \qquad
Observational Method: unaided eye paper tube binoculars telescope (circle one) Drawing:

Instructions for Completing Daily Observation Log

Observer: Please print your full name
Date: Record current month/day/year (i.e. 01/08/2009)
Time: \quad Record the time you began the observation and circle AM or PM
Duration: Record the total number of minutes you actually made your observation
Sky: \quad Circle one number that best represents the sky from clear to completely overcast. 0 = clear; 1 = a few small clouds; $2=$ partly cloudy; $3=$ sky 50% cloud-covered; $4=$ few breaks in clouds; $5=$ completely overcast

Seeing: Circle one number that best represents the seeing conditions from excellent to poor. "Seeing" is a term used by astronomers to describe the steadiness of the atmosphere. One method of determining how steady or unsteady the atmosphere is, due to air currents and temperature changes, is by studying the brighter stars. Bright stars that appear to "twinkle" indicate turbulence in the layers of air in the atmosphere. Rate the seeing conditions on a scale of 0 for perfectly steady to 5 for stars that appear to "dance" in the sky.

Constellation(s): List any constellation you are able to identify in the night sky.
$\operatorname{Star}(\mathbf{s}): \quad$ Write the name of each brightest star you are able to identify by consulting a star chart or atlas.

Planet(s): Write the name of any planet you identify by referring to current data available giving its location.

Object(s): Record the number and types of objects seen in the sky. Examples include meteors ("falling or shooting stars"), satellites, comets, asteroids, etc.

Phenomena: Any form of sky glow, such as aurora or the Milky Way, may be recorded
Observational Method: Circle the method of observation used. More than one per observation period can be utilized.

Drawing: Draw the moon phase (amount of sunlit portion) if visible. Also draw in anything recorded for that day's observation. You should draw in boundary lines separating different parts of the sky and include the direction abbreviated (i.e. SW) for each segment.

MARKINGS ARE CLOUD BANDS -

MAG.
MAG.

JUPITER

BIG JUPE IS THE EASIEST PLANET TO SEE--ALWAYS RRIGHTER THAN -11/2 MAG. HIS FOUR BRIGHTEST MOONS Of MAG. 6 SHUTTLE BACK AND FORTH, CHANGING NIGHTLY

ONE OUT OF 15 STARS IS A DOUBLE OR MULTIPLE STAR AND ABOUT 500 OF THESE FROM 2 SECDNDS TO I MINUTE OF ARC SEPARATION CAN BE "SPLIT," WTHM SMAHLTELESCOPES

THE SUN

...INTERESTING TELESCOPE OBJECT AT 4OX TO 7OX BUT YOU MUST USE A SUN FILTER TO AVOID SERIOUS INJURY TO YOUR EYE. THE SUN SPOTS ARE EASYTO SEE
 SATURN IS THE PRETTIEST PLANET. THE RINGS ARE SEEN PLAINLY AT $40 \times$ ALTHOUGH INVISIBLE WITH $7 \times$ BINOCULAR. WITH HIGHER POWER YOU MAY BE ABLE TO SEE CASSINIS DIVISION

VARIABLE STARS

A VARIABLE STAR VARIES IN BRIGHTNESS, THE CHANGE TAKES 2 DAYS (AVERAGE), MAKING THE V.S. A POOR "SHOU" OBJECT ALTHOUGH IDEAL FOR SYSTEMATIC STUDY

planetary Nebulae planetary nebulae are so NAMED ONLY BECAUSE THEY ARE ROUND LIKE PLANETS. THEY ARE LUMINOUS GAS CLIOUDS AND ARE A PART OF OUR GALAXY

DIFFUSE NEBULAE

A LARGE DIFFUSE GAS CLOUD LIGHTED BY THE STARS INITS VICINITY IS KNOWN AS A BRIGHT DIFFUSE NEBULA. M4Z IN ORION IS IMPRESSIVE, EASILY SEEN WITH ANY TELESCOPE

THE MOON
MAGNitude -12 When full IS 190,000 TIMES BRIGHTER THAN FIRST MAGNITUDE STAR. CRATER TYCHO (TIE-CO) IS ON SOUTH SIDE - MOST PHOTOS ARE SHOWN INVERTED

RED MARS MAKES A NEAR APPROACH TO THE EARTH EVERY OTHER YEAR, AND AT SUCH TIMES SOME SURFACE DETAIL CAN BE SEEN WITH TELESCOPES AT $200-300 \times$

LIKE ALL OF THE PLANETS, VENUS ORBITS AROUND THE SUN AND IS LIGHTED BYTHE SUN. ON HER NEAR APPROACHES TO THE EARTH SHE IS BRILLIANT AT -4 MAGNITUDE

CONSTELLATIONS

A CONSTELLATION IS A GROUP OF STARS, USUALLY FORMING SOME KIND OF PATTERN OR "PICTURE." PROPERLY, A CONSTELLATION IS A SPECIFIC AREA OF THESKY

OPEN CLUSTERS

OPEN CLUSTERS OF STARS ARE A FAVORITE TARGET FOR THE TELESCOPE. 40 TO 60X IS ENOUGH FOR MOST GROUPS POPULAR PLEIADES CLUSTER IS A FINE BINOCULAR OBJECT

EXTERNAL GALAXIES GALAXIES ARE COMPLETE STAR SYSTEMS LIKE OUR OWN GALAXY. ALL ARE VERY DISTANT. MZI SHOWN IS ABQUT AS BRIGHT AS A STAR OF $9^{\text {th }}$ MAGNITUDE

GLOBULAR CLUSTERS

A GLOBULAR CLUSTER IS A BALL OF STARS. INDIVIDUAL STARS ARE FAINT AND NEED 6° OR MORE APERTURE FOR RESOLITION. MI3 AND MZ2 ARE TWO BRIGHTEST

No.	TYPE	CONS.	M.
M 44	OPENCL.	CANCCE	3.7
M41	OPENCL.	CAN5'MAS.	4.6
M2A	OPEN CL.	SAGR.	4.6
M31	GALAXY	ANDR.	4.8
M35	OPENCL.	GEM/N/	5.3
M13	GLOBULAR	HEREDLES	5.7
M22	GLOBULAR	SAGR.	5.9
M8	DIFFUSE HEB,	SAGR.	-
M42	DIFFUSENEB,	ORION	-
M57	PLAMETARY	LYRA	9.

MESSIER OBJECTS

FRENCH ASTRONOMER, CHARLES MESSIER, MADE UP THE FIRST LIST OF SKY OBJECTS OTHER THAN STARS (1784). ALL OF THE 103 M-OBJECTS CAN BE SEEN WITH SMALL TELESCOPES

Faces on the Moon

Directions: Draw as many figures of people and animals you can find on the view of the Moon below and label them at the numbered list at the bottom of the page.

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad

Constellations

Directions: Using your pen or pencil, connect the dots (stars) to form the stick figure patterns of the stars making up each constellation.

Cancer

Cygnus

Orion

Gemini

Sagittarius

Cassiopeia

Leo

Ursa Major

